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ABSTRACT
Graphs are a data structure that lends itself to representing a wide
range of entities connected by relationships. Insights into such en-
tities are learned by graph clustering models that group nodes by
either communities or roles. While community detection methods
divide vertices into clusters with more significant internal than ex-
ternal connectivity, role discovery algorithms divide nodes by max-
imizing the similarity in the connectivity structure. Even though
both are clusters of vertices, communities and roles excel at different
tasks, such as link prediction and anomaly detection, respectively.

Many role discovery algorithms explicitly or implicitly regard
the degree as the most discriminating node feature. Methods that
depend on how many neighbors a node has work very well for
graphs in which the intra-role patterns of connectivity are equiv-
alent. However, in this research paper, we show that structurally
similar nodes with different degrees can be mislabeled by existing
models since the connectivity structure is similar yet not equivalent.

To address this, we present Diffusion-Driven Role Recognition
(D2-R2), an unsupervised learning model designed to account for
structurally similar nodes differing in degree, which is important
for, e.g., social networks. Firstly, we compute a diffusion matrix
in such a way as to explore the neighborhoods of the vertices
without emphasizing differences in degree. From this, we extract
the diffusion patterns that summarize the connectivity structure
of the nodes. Then, we compute the distance between them via
Dynamic Time Warping (DTW) and assign a given number of
roles by running k-means. Tests on both synthetic graphs and non-
synthetic networks show that D2-R2 outperforms methods such
as RolX, struc2vec, and GraphWave by up to 21.2% in accuracy and
35.3% in F1 score for graphs in which there are differences in degree
between structurally similar nodes.
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1 INTRODUCTION
Networks are used to learn insights into entities connected by
(mostly binary) relationships, such as connections between devices
(communication networks), links between pages (information net-
works), and relationships between users (social networks). This is
largely done by detecting communities [27, 30], discovering roles
[4, 9, 22], and computing centrality measures such as betweenness
[5, 6] and PageRank [1]. Even though both communities and roles
are clusters of nodes, the former excels at, e.g., link prediction and
the latter at, e.g., anomaly detection [24]. At the same time, both are
used for, e.g., node classification. Methods like BH-CRM [2] account
for both simultaneously but, in this research paper, we focus on
role discovery only.

Roles can be defined in several manners. Here, we assume that
(i) a node has a role, like an employee of a company has a job title;
and (ii) a group of nodes shares a role if structurally similar [23],
that is, if similarly connected to their neighbors. This implies that,
as written by Lorrain and White [15], roles can be inferred not
only from external features, but also from the edges between the
vertices.

Existing role discovery algorithms can be divided into two cate-
gories. On the one hand, there are methods like RolX [9] that consist
of two steps: feature construction and role assignment. Here, the idea
is to label nodes based on features extracted in order to summarize
the connectivity structure of the graph [23]. On the other hand,
there are models that are originally from Graph Representation
Learning (GRL) [8], whose purpose is to embed vertices, edges, and
graphs into low-dimensional representations that can be fed to a
learning model such as a node classifier. Methods like struc2vec
[22] are designed to learn role-based node embeddings, which can
be utilized to group vertices by role.

Yet, role discovery algorithms are sensitive to the degree, that
is, the number of neighbors, of a node. For example, RolX and
struc2vec explicitly assume that the degree is necessary to capture
the patterns of connectivity. However, it is not sufficient because,
from the point of view of a node, it captures the local patterns only
and cannot account for connections further than one hop away. For
example, the blue vertices shown in Figure 1 (both on the left and
on the right) have different degrees but the same role because the
connectivity patterns are similar despite the noise. On the other
hand, GraphWave [4] explores the neighborhoods automatically.
Still, it does it by computing how much the nodes diffuse to their
neighbors, which is sensitive to the degree. Overall, the explicit or
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(a) (b)

Figure 1:While the structurally similar nodes in the graph on
the left are easily recognized, the differences in degree in the
graph on the right, as well as the added noise, cause the intra-
role patterns of connectivity to be similar yet not identical.
Roles are color-coded.

implicit dependency on the degree can cause methods like RolX,
struc2vec, and GraphWave to mislabel structurally similar nodes
differing in degree.

To further justify the motivation behind this research paper, let
us take a company as an example. If we have information about,
e.g., the e-mails exchanged by the employees, we can group people
by department or title, that is, by community or role, respectively.
It is safe to assume that (i) the departments are not identical, and
(ii) the titles are not specific to the departments. As a matter of fact,
there could be differences in the internal structure or in the number
of members, which could cause a line manager to exchange more
e-mails with more recipients, for example. Therefore, the fact that a
group of employees shares a title does not imply that they interact
with their teammates in the same manner.

In this research paper, we present Diffusion-Driven Role Recog-
nition (D2-R2), which is an unsupervised learning model designed
to take into account potential differences in degree between struc-
turally similar nodes. This is important for social networks and
graphs in general. As shown in Figure 2, D2-R2 consists of three
steps.

(1) Diffusion Matrix Construction. To capture the connectivity
structure of the nodes, we compute a diffusion matrix, i.e.,
Ph , in such a way as to explore the neighborhoods without
emphasizing differences in degree.

(2) Diffusion Patterns Construction. From P , we extract the diffu-
sion patterns summarizing the connectivity structure of the
nodes. This is done by ordering the neighbors of a node by
distance in number of hops and degree.

(3) Role Assignment. D2-R2 utilizes Dynamic Time Warping
(DTW) [13] to compute the distance between the diffusion
patterns, based on which a given number of roles is assigned
by running k-means.

In the first step, the connectivity structure of the vertices is cap-
tured by calculating a diffusion matrix, i.e., P = I−D−1A. To explore
up to the h-hop neighborhood of a node, diffusion is simulated h
times by computing Ph , where h is a parameter.

In the second step, D2-R2 constructs a diffusion pattern per node.
Essentially, a pattern is a series of values summarizing how a vertex
is connected to the rest of the graph. Even though the rows of Ph

capture the connectivity structure of the nodes, it is not tractable to
align (sub)graphs to compare the diffusion patterns with each other.
As a result, a heuristic is necessary for us to do this. D2-R2 permutes
the cells of the rows of Ph , that is, the neighbors of the nodes, in
a vertex-specific manner. Specifically, the diffusion patterns are
constructed by ordering the neighbors of a node first by minimum
distance in number of hops from the node and then by degree.

There is a parallel between community detection and diffusion
and thus D2-R2. As a matter of fact, we extract features in a manner
that can be “paraphrased” as follows. Many community detection
algorithms like Stad [27] use diffusion to detect communities. Simi-
larly, D2-R2 utilizes diffusion to assign roles instead. This can be
interpreted as clustering the nodes based on the community mem-
berships, that is, how much a node is a member of the communities
in a graph.

In the third phase, D2-R2 utilizes cDTW [32] to compute the
distance between the diffusion patterns and thus calculate how
similar the nodes are to each other from a structural point of view.
Based on this, a given number of roles is assigned by running k-
means. DTW is originally from Time Series Analysis and allows
one point in a series to map to one or more points in another. It is
necessary for us to account for smaller and larger neighborhoods,
which is one of the effects of the differences in degree between
the nodes. As a result, even if two diffusion patterns are equal in
length, the subseries of cells mapping to the 1-hop neighbors can
be shorter or longer and this can cause the Euclidean distance to
be confusing, for example.

D2-R2 works for both undirected and directed graphs, and fur-
thermore, is able to take advantage of weighted edges.

Tests on synthetic graphs in which there are differences in degree
between structurally similar nodes show that D2-R2 outperforms
node2vec [7], RolX, struc2vec, GraphWave, and RiWalk [16] by up to
21.2% in accuracy and 35.3% in F1 score. Furthermore, experiments
on non-synthetic networks encoding relationships between entities
such as the employees of a company suggest that D2-R2 can discover
roles found in real life better than the other methods.

Note that the ground-truth roles of the test graphs are utilized
to compute accuracy and F1 score. Yet, they are not used for train-
ing because D2-R2 is unsupervised. As such, it is compared with
unsupervised models only. Overall, we believe that unsupervised
learning is essential for role discovery because a tiny number of
graphs has ground-truth roles on which a machine learning model
such as classifier or a deep learning model such as a Graph Neural
Network (GNN) can be trained.

In this research paper, we make the following contributions.

• We show that methods like RolX, struc2vec, and GraphWave
are sensitive to the degree of the nodes, and as a result, can
divide into different clusters nodes because that have the
same role but are not equal in degree.

• We present D2-R2, an unsupervised model designed to take
into account potential differences in degree between struc-
turally similar nodes, which cause the patterns of connectiv-
ity to be similar yet not equivalent.
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Figure 2: D2-R2 consists of three phases: diffusion matrix construction, diffusion patterns construction, and role assignment.
Here, it is shown applied to an asymmetric barbell graph. Roles are color-coded.

2 RELATEDWORK
Here, we review a number of models that have established them-
selves as go-to for role discovery. Then, we discuss why they can
mislabel nodes with the same role but a different degree.

Similar to word2vec [18], DeepWalk [21] is one of the first al-
gorithms designed to learn node embeddings. Drawing a parallel
between words and vertices, it replaces sentences with random
walks, which are fed to a continuous skip-gram model. This em-
beds the nodes in a graph into a low-dimensional space in which
the nodes surrounded by the same neighbors are close to each other.
DeepWalk is not designed to capture the connectivity structure of
the nodes; however, there are many algorithms derived from it by
biasing the random walks that are specific to role-based embed-
dings.

One of many methods is node2vec [7], which biases the random
walks towards either Breadth-First Sampling (BFS) or Depth-First
Sampling (DFS). Essentially, the former is used to capture the com-
munity memberships of the nodes, while the latter is utilized to
explore the neighborhoods of the nodes in depth, and thus, to learn
node embeddings summarizing the connectivity structure of the
nodes so that the role memberships of the nodes can be embed-
ded into the low-dimensional representations. Yet, Rossi et al. [24]
assert that, by construction, models that learn node embeddings
from random walks are bound to a vague notion of proximity, since
it is not possible for random walkers to jump from a part of the

graph to another. Furthermore, it can be hard to explore a graph
fully if it is not connected, even though roles should generalize to
different networks and thus to different components of the same
graph [24].

To bypass the notion of proximity proper to the concept of ran-
domwalk, struc2vec [22] transforms the initial network into a multi-
layer higher-order version of it which is then used to generate the
random walks. In this higher-order network, the weight of the edge
between two nodes in the kth layer is proportional to the structural
similarity between them, computed as the distance between the de-
gree distributions of their k-hop neighbors by means of DTW. Then,
the randomwalks are fed to a continuous skip-grammodel learning
the node embeddings. While struc2vec uses random walks, it does
not fall in their spatial limitations since they are collected from
the higher-order network. Still, the structural similarity between
the nodes is only measured on the basis of their neighbors’ de-
gree distribution and thus fails to capture more global connectivity
patterns that would allow it to learn more significant insights into
the connectivity structure of the graph.

Ma et al. [16] position RiWalk as a GRL model that starts by
inferring the role memberships of the nodes in a manner that re-
minds of a graph kernel. As done by node2vec and struct2vec, a
continuous skip-gram model is then trained to learn role-based
node embeddings. This is fed a version of the graph modified by
labeling the context nodes in the subgraph induced by an anchor
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node according to the role they play in relation to it. While RiWalk-
SP as struc2vec assumes the degree to be the most discriminating
node feature, RiWalk-WL utilizes neighborhood aggregation to cat-
egorize the context nodes. Specifically, the latter labels a context
node as a function of how many of its neighbors are at distance
k ∈ {0, 1, . . . ,k∗} from the anchor node, where k∗ is the diameter
of the induced subgraph. Still, a context node with a higher degree
will have a larger number of neighbors, and as a result, a higher
count of how many of its neighbors are at distance k from the
anchor node.

RolX [9] perfectly falls in the category of feature-based methods
[23]. In the first step, also known as ReFeX [10], the nodes in a graph
are represented as a matrix consisting of features constructed from
the graph in a recursive manner. These features are the degree,
the number of within-egonetwork edges, and the number of in-
coming and outgoing edges in the egonetwork. These features are
meant to capture the structural properties of the nodes and allow
the algorithm to work on a more tractable representation of the
graph itself. The matrix is then decomposed by means of Nonneg-
ative Matrix Factorization (NMF) [14] so that two new matrices
are derived starting from the original one. One of these describes
the role memberships of the nodes, while the other one highlights
which features are characteristic of which role, thus providing a
sort of automatic interpretation of the roles. As struc2vec, RolX is
very sensitive to the choice of the features used to represent the
nodes. Like it is the case for many more methods, it is crucial to
select features that are actually representative of the patterns of
connectivity of the nodes.

GraphWave [4] follows a different strategy. While it produces
node embeddings, it is different from the one used in node2vec
and struc2vec. Inspired by Graph Signal Processing, GraphWave
characterizes each node on the basis of how it diffuses to all others
via spectral graph wavelets. These diffusion wavelets are then used
to define a characteristic function per node based on which the
nodes are clustered. GraphWave is more accurate than the previous
methods but still struggles to deal with structurally similar nodes
if the neighborhoods differ in size. Let us suppose that there are
two stars and u and v are the hubs. u hasM neighbors and v has N ,
withM , N . If we suppose that a unit of energy diffuses from both
u and v , as suggested in the original research paper, then they will
diffuse more or less the same quantity to their immediate neighbors.
However, sinceM , N , the neighbors of u will receive a different
quantity than the neighbors of v . Thus, u and v will appear to not
be similar.

In this research paper, we focus on unsupervised learning only.
Nevertheless, we must mention that there are many node classifiers
designed to take advantage of the connectivity structure of the
graph. Models like Graph Convolutional Networks (GCNs) [11] are
based on the concept of neural message passing, which reminds of
the algorithm developed by Weisfeiler and Leman [31] to assess
whether two graphs are isomorphic. With GNNs, a node is embed-
ded in a low-dimensional space by updating its position on the
basis of the messages it receives from its neighbors. Both exter-
nal and internal node features can be shared with a message, and
furthermore, the fact that the edges function as shipping routes
implies that GNNs capture part of the connectivity structure of
the nodes. Nevertheless, classification models are supervised and,

as such, require training data which is seldom available for role
discovery.

3 METHODS
In this section, we go into the details of the workings of D2-R2,
which consists of three steps: diffusion matrix construction, diffu-
sion patterns construction, and role assignment. Note that it can be
applied to both undirected and directed graphs, and furthermore,
can account for weighted edges.

3.1 Diffusion Matrix Construction
There is a wide range of options to capture the patters of connec-
tivity of the nodes. While it is efficient to convert a graph into a
few node features, it can be hard to answer the question of what
are the most discriminating from a structural point of view. As
discussed in Section 1, the degree of a vertex is important but some-
times insufficient to capture the connectivity structure of the node.
Thus, as done by Donnat et al. [4], we take advantage of Graph
Signal Processing so that we can explore the neighborhoods of the
nodes in an automatic manner, which does not require a number
of features to be specified. This is equivalent to simulating random
walks biased in such a way as not to emphasize potential differences
in degree between vertices. Diffusion is simulated by computing
P = I − D−1A [28], where D and A are the degree and the adja-
cency matrix of the graph, respectively. As a matter of fact, P is
also known as the random-walk Laplacian matrix. Note that, if the
graph is directed, either the in-degree or the out-degree matrix can
be used to compute P .

To explore the neighborhoods of the nodes in depth, P is raised
to the power of h, where h is a parameter equal to the length of the
random walks in number of hops. If h is small, D2-R2 will discover
only roles that can be inferred from the connectivity structure of
the nodes on the local level. Therefore, h is to be thought of as the
depth of the neighborhood to be explored.

3.2 Diffusion Patterns Construction
Ph is constructed is such a way as to capture the patterns of con-
nectivity of the nodes. Nevertheless, it is necessary to reshape the
information on the connectivity structure of the graph so that the
nodes can be compared with each other.

By construction, a row of Ph summarizes the patterns of connec-
tivity of a vertex. Still, it is necessary to align the neighborhoods
of the nodes so that the rows can be compared with each other.
Unfortunately, it is not possible to do this because of the (sub)graph
isomorphism problem. Therefore, for each node, we construct a
diffusion pattern according to a heuristic, which allows us to ensure
that the distance between the diffusion patterns is representative
of the structurally similarity between the nodes.

Essentially, a diffusion pattern is a series of values extracted
from Ph by permuting the cells of a row, that is, the neighbors
of a node, in a vertex-specific manner. First, the neighbors are
ordered by (minimum) distance in number of hops from the node,
since the diffusion patterns are extracted from Ph instead of P .
Then, the neighbors are ordered by degree, because of the fact
that random walkers are more likely to visit high-degree than low-
degree vertices.
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3.3 Role Assignment
In the third step, we do the actual role assignment. Based on the
assumption that nodes that are structurally similar have similar pat-
terns of connectivity, the vertices are divided into a given number
of clusters by running k-means.

D2-R2 uses a heuristic to ensure that the diffusion patterns can
be compared to each other. However, it is necessary to account for
potential differences in length not only between the diffusion pat-
terns, but also between subseries of values mapping to neighbors at
a given distance from a node. This is taken into account by utilizing
DTW to compute the distance between the diffusion patterns. Orig-
inally from Time Series Analysis, DTW essentially allows one node
in a series to map to one or more nodes in another series. Since it
is necessary to compare each pair of diffusion patterns, cDTW [32]
is used to decrease the up time.

Based on the distance between the diffusion patterns, a given
number of roles is assigned by running k-means. While it is nec-
essary to specify the number of clusters manually, it is possible to
estimate the number of roles in an automatic manner, as done by
Henderson et al. [9].

4 RESULTS AND DISCUSSION
In this section, we do several experiments to test D2-R2. We run it
as well as node2vec, RolX, struc2vec, GraphWave, and RiWalk-WL on
both synthetic graphs and non-synthetic networks. Since DeepWalk
does not claim to preserve structural similarity, we do not include
it in the tests. Parameters are set to the values suggested by the
original research papers1. In addition, we set p = 1 and q = 2 to
bias node2vec towards Depth-First Sampling (DFS). Here, we select
h by employing an elbow method, but we discuss how sensitive
D2-R2 is to h and thus how to set the parameter in Section 4.1.1.

Since the ground-truth roles are available, the number of clusters
is known, and furthermore, it is possible to compute pairwise accu-
racy and F1 score [17]. Here, a true positive is a couple of nodes that
have the same role and are correctly assigned to the same cluster,
for example. Tables 1–3 and Table 6 show the mean accuracy and
(macro) F1 score of the models over 10 runs.

4.1 Synthetic Graphs
Firstly, D2-R2 is compared with the other methods by testing them
on several synthetic graphs originally designed by Donnat et al. [4]
for role discovery performance evaluation.

Let us consider a 30-node cycle graph to which we attach a shape
— house, fan, or star — every 3 nodes. See Figure 3. We generate a
more complex graph by increasing the length of the cycle graph to
40 and by attaching 8 fans, 8 houses, and 8 stars to it. All graphs
are relatively similar from a structural point of view; therefore,
Table 1 shows the mean accuracy and F1 score on Fans and Varied
only. In both cases, D2-R2 achieves the best accuracy and the highest
F1 score. As done by Donnat et al. [4], we then add 5%, 10%, and
15% edges at random to assess how resistant to noise the methods
are. As shown in Table 1, RiWalk is the most resistant to noise but
D2-R2 does sometimes do better and, if not, the difference between
them is very small.

1node2vec, struc2vec, and RiWalk: d = 128, k = 10, l = 80, and r = 10

(a) Fan (b) House (c) Star

Figure 3: Fans, houses, and stars are attached to a cycle graph.
Roles are color-coded.

(a) m1 = 6,m2 = 7 (b) m1 = 6,m′
1 = 10,m2 = 7

Figure 4: Barbell Graphs

Both Fans and Varied have a structure characterized by a certain
symmetry. To further compare the methods, Fans is modified by
introducing fans that differ in size as well as by decreasing the
number of the nodes in the cycle graph to 15. Now, the degree
of the node in the middle of the fans is equal to either n = 6 or
n′ = 10. We verify that, for each run, there is at least a fan of
7 and a fan of 11 nodes in this graph. Table 2 shows the mean
accuracy and F1 score on the modified version of Fans compared
with the previous one. If there are no differences in the degrees of
the fans, GraphWave, RiWalk, and D2-R2 correctly assign the roles.
However, the introduction of the 11-node fans causes GraphWave
and RiWalk’s accuracy and F1 score to drop.

Tests on barbell graphs, which are often used for role discovery
performance evaluation [4, 9, 22], allow us to account for less trivial
patterns of connectivity. Barbell graphs generally consist of two
complete graphs connected by a path. We break the symmetry
proper to the barbell graph by modifying it so that a path, whose
length is equal tom2, connects a barbell ofm1 to a barbell ofm′

1
nodes, wherem1 , m′

1. Specifically, we do an experiment on the
symmetric and the asymmetric barbell graph shown in Figures 4(a)
and 4(b), respectively.

As shown in Table 3, RolX, GraphWave, and D2-R2 get the best re-
sults in the case of the symmetric barbell graph. However, breaking
the symmetry of the graph causes the yellow nodes to be divided
by all of the methods, except ours. In contrast, D2-R2 recognizes
the nodes in the barbells as structurally similar and, moreover, it
correctly identifies the nodes at the same distance from the barbells.

4.1.1 Sensitivity to h. As mentioned in Section 3, D2-R2 has two
parameters: the number of hops, i.e., h, and the number of clusters
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Table 1: Synthetic Graphs

0% 5% 10% 15%
Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

Fans
node2vec 0.690 0.146 0.696 0.170 0.689 0.159 0.691 0.162
RolX 0.731 0.300 0.701 0.276 0.673 0.256 0.687 0.251
struc2vec 0.954 0.879 0.746 0.382 0.786 0.454 0.784 0.452
GraphWave 1.000 1.000 0.759 0.403 0.835 0.572 0.848 0.625
RiWalk 1.000 1.000 0.856 0.606 0.921 0.789 0.955 0.880
D2-R2 (h = 3) 1.000 1.000 0.845 0.602 0.918 0.793 0.953 0.879

Varied
node2vec 0.817 0.149 0.822 0.143 0.825 0.159 0.822 0.159
RolX 0.828 0.293 0.807 0.211 0.809 0.168 0.805 0.159
struc2vec 0.814 0.289 0.808 0.228 0.811 0.234 0.794 0.250
GraphWave 0.958 0.826 0.858 0.349 0.874 0.442 0.891 0.522
RiWalk 0.972 0.881 0.896 0.511 0.917 0.613 0.923 0.638
D2-R2 (h = 3) 0.983 0.928 0.884 0.477 0.912 0.600 0.929 0.680
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Figure 5: Both accuracy and F1 score on the barbell graphs are shown on the vertical axis as a function of h.

and thus roles. As node2vec, struc2vec, GraphWave, and RiWalk, we
assume that the latter is known. Here, we discuss the effect of the
former on D2-R2’s performance. It is tested on both versions of the
barbell graph utilized for the previous experiment. Figure 5 shows
accuracy and F1 score as a function of h, which ranges from 1 to
10, that is, from 1 to the diameter of the graph.

Symmetric Barbell Graph. In the beginning, both measures
are relatively unstable. There is a sharp incline towards h = 4. Then,
the mean of the accuracy and the F1 score stay at 1.000 and 1.000,
respectively.

Asymmetric Barbell Graph. Both accuracy and F1 score in-
crease slowly and sharply incline at h = 7. At h = 8, both reach a
maximum of 0.999 and 0.998 respectively.

Overall, it is clear that D2-R2 is sensitive to h. As show in
Figure 5, the larger the h, the better the accuracy and the higher
the F1 score, which suggests that the deeper the neighborhoods,
the more significant the insights into the connectivity structure of
the nodes. However, we must note that the larger the h, the higher

the risk of flattening the signal by diffusing too much and thus
over-smoothing.

Our suggestion is to set h to the diameter of the graph. If this
is not a finite number, h can be set by using an elbow method.
Unfortunately, this requires the ground-truth roles, but at the same
time, we notice that a better silhouette [25] generally maps to both
a better accuracy and a higher F1 score.

4.2 Non-Synthetic Networks
To assess how applicable D2-R2 is, we do experiments on several
non-synthetic networks. Table 4 shows the number of nodes, edges,
and roles in the test networks. Note that the distribution of the roles
is never uniform. As a working hypothesis, we assume that roles can
be inferred from the patterns of connectivity of the nodes. While
this is usually done for role discovery performance evaluation, there
is no guarantee that e.g. the e-mails exchanged by the employees
of Enron are sufficient.
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Table 2: Fans

Accuracy F1 Score
(n = 6)

node2vec 0.709 0.144
RolX 0.729 0.262
struc2vec 0.873 0.708
GraphWave 1.000 1.000
RiWalk 1.000 1.000
D2-R2 (h = 2) 1.000 1.000
(n = 6, n′ = 10)
node2vec 0.686 0.205
RolX 0.682 0.400
struc2vec 0.854 0.683
GraphWave 0.828 0.620
RiWalk 0.889 0.739
D2-R2 (h = 2) 1.000 1.000

Table 3: Barbell Graphs

Accuracy F1 Score
(m1 = 6,m2 = 7)

node2vec 0.754 0.487
RolX 1.000 1.000
struc2vec 0.985 0.985
GraphWave 1.000 1.000
RiWalk 0.987 0.978
D2-R2 (h = 4) 1.000 1.000
(m1 = 6,m′

1 = 10,m2 = 7)
node2vec 0.739 0.582
RolX 0.692 0.500
struc2vec 0.782 0.638
GraphWave 0.787 0.645
RiWalk 0.737 0.586
D2-R2 (h = 8) 0.999 0.998

Tables 5 and 6 show mean accuracy and F1 score over 10 runs.
Note that some methods are not applicable to directed graphs and
some others to weighted ones.

4.2.1 Consult and R&D. node2vec, RolX, struc2vec, GraphWave, Ri-
Walk, and D2-R2 are tested on a few social networks collected by
Cross and Parker [3]2. Consult encodes the connections between
the employees of a consulting company and R&D the relationships
between the members of a research and development group of a
manufacturing company. Cross and Parker [3] collected the weights
of the edges by asking the employees of the consulting (resp., man-
ufacturing) company to give a score on a scale from 0 to 5 (resp.,
6) on how much they thought they could ask somebody for advice
(Consult / Advice and R&D / Advice), how important they though
somebody else’s skills were for their work (Consult / Value), and
how aware they were of somebody else’s skills (R&D / Aware).

2Available at https://toreopsahl.com/datasets/#Cross_Parker.

As shown in Table 5, RolX and RiWalk are the most accurate in
clustering Consult and R&D, respectively. D2-R2 has the highest
F1 score by a margin of up to 19.0%. It can be induced that all the
methods can be used for non-synthetic networks, some achiev-
ing better results than others, and that D2-R2 has the best recall,
hence the highest F1 score. If the recall is better, there is a smaller
number of false negatives and thus of pairs of nodes that have the
same role but are assigned to different clusters. Therefore, D2-R2 is
recommended for applications that require a high F1 score.

4.2.2 Enron, Hospital, and Highways. Lastly, we experiment on
Enron [12], Hospital [29, 33], and Highways [16]. Enron encodes
connections between a subset of employees of Enron. Like Consult
and R&D, it is directed and weighted according to the number
of internal e-mails exchanged by the employees. In Hospital and
Highways, the edges have neither direction nor weight. Hospital
encodes contacts between people (medics, paramedics, patients,
and administrative staff) in a geriatric ward of a hospital in Lyon,
France, who wore an RFID tag from Dec 6, 2010 to Dec 10, 2010 [29].
In Highways, the nodes are the largest cities in China, the edges
are the highways between them, and the node roles are “capital of
a province, a municipality, or a special administrative region” or
“none of the above”.

node2vec has the best accuracy in the test on Enron. D2-R2 gets
the highest F1 as well as the worst accuracy, but we notice that that
the larger the h, the better the accuracy and the lower the F1 score,
and the other way around. This suggests that D2-R2 can be adapted
to specific tasks by tuning h. On a minor note, only node2vec and
D2-R2 are applicable to weighted directed graphs such as Enron,
from which it follows that the direction and the weight of the edges
can be important for role discovery. Unlike Enron, Hospital and
Highways are both undirected and unweighted. Nevertheless, D2-
R2 has the highest F1 score and the best accuracy in the test on the
latter network by a relatively large margin.

Results show that D2-R2 is highly competitive, especially if re-
call is important. Sometimes it is not the most accurate, but it is
constantly in the top two in terms of F1 score, which is normally
regarded as a more solid performance measure. Experiments also
suggest that more significant insights into the connectivity struc-
ture of the nodes can be learned by taking advantage of the direction
and the weight of the edges.

5 FUTUREWORK
Below, we discuss a few directions worth exploring to further im-
prove D2-R2.

Diffusion Matrix. It might be interesting to test different diffu-
sion matrices. P = I − D−1A allows us to automatically explore the
neighborhoods without emphasizing difference in degree; however,
it is possible to smooth the signal of the degree in a more aggressive
manner if need be.

Motifs, Graphlets, and Orbits. In the first step, i.e., diffusion
matrix construction, we automatically explore the neighborhoods
of the nodes. It could be interesting to do this by counting motifs
[19, 20], graphlets, or orbits. Despite the fact that it is not trivial to
answer the question of what subgraphs are the most representative
3To run this algorithm, the direction of the edges had to be removed.
4To run this algorithm, the weight of the edges had to be removed.
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Table 4: Number of nodes, edges, and roles in the test networks.

Directed Weighted Nodes Edges Roles References

Consult / Advice ✓ ✓ 46 879 5 [3]
Consult / Value ✓ ✓ 46 858 5 [3]
R&D / Advice ✓ ✓ 77 2,228 4 [3]
R&D / Aware ✓ ✓ 77 2,326 4 [3]
Enron ✓ ✓ 182 3,010 10 [12]
Hospital 75 1,139 4 [29, 33]
Highways 348 675 2 [16]

Table 5: Average accuracy and F1 score on Consult and R&D.

Consult / Advice Consult / Value R&D / Advice R&D / Aware

Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

node2vec 0.663 0.225 0.658 0.220 0.487 0.342 0.486 0.342
RolX 0.669 0.272 0.694 0.361 0.487 0.356 0.497 0.375
struc2vec3,4 0.594 0.306 0.618 0.295 0.499 0.432 0.503 0.420
GraphWave3 0.667 0.309 0.646 0.322 0.503 0.411 0.512 0.406
RiWalk3,4 0.643 0.300 0.618 0.300 0.485 0.381 0.501 0.396

D2-R2 (h = 4) (h = 4) (h = 5) (h = 5)
0.548 0.328 0.458 0.369 0.499 0.622 0.504 0.602

Table 6: Average accuracy and F1 score on Enron, Hospital, and Highways.

Enron Hospital Highways

Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

node2vec 0.750 0.163 0.572 0.328 0.518 0.644
RolX 0.738 0.159 0.598 0.274 0.500 0.623
struc2vec3,4 0.707 0.179 0.629 0.417 0.672 0.793
GraphWave3 0.738 0.161 0.627 0.337 0.535 0.665
RiWalk3,4 0.690 0.200 0.634 0.366 0.579 0.711

D2-R2 (h = 4) (h = 2) (h = 3)
0.618 0.224 0.468 0.421 0.762 0.863

of the connectivity structure of the nodes, it would be possible to
have finer control of the features used to infer the roles.

Approximated Versions of DTW. To decrease the computa-
tional complexity of the algorithm, we utilize cDTW instead of
DTW itself to compute the distance between the diffusion patterns.
Nevertheless, we must mention that there are approximated ver-
sions such as FastDTW [26] which could be tested.

Number of Clusters. Even though the number of roles is a
parameter now, this can be inferred from a graph by replacing k-
means with a clustering method such as Stad [27] that does not
require the number of clusters to be given.

6 CONCLUSIONS
In this research paper, we present D2-R2, an unsupervised model
designed to account for potential differences in degree between
structurally similar nodes. It uses biased random walks to explore

the neighborhoods of the nodes in such a way as not to emphasize
differences in degree. Then, the information about the connectivity
structure of a node is summarized in a diffusion pattern. With DTW,
we can compute the distance between the diffusion patterns and
thus the structural similarity between the nodes. This is the basis
on which k-means assigns a given number of roles to the nodes in
the graph.

Tests on both synthetic graphs and non-synthetic networks show
that D2-R2 always does as well as or better than node2vec, RolX,
struc2vec, GraphWave, and RiWalk. If there are nodes with the same
role but a different degree, D2-R2 gains up to 21.2% in accuracy
and 35.5% in F1 score. Furthermore, it is resistant to noise, and it
always has the highest F1 score on non-synthetic graphs such as
social networks.

As suggested by the results, D2-R2 is better for role discovery in
networks in which the patterns of connectivity of the structurally
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similar nodes are similar yet not equivalent because of differences
in degree. This is essential to learn insights into, e.g., organizational
networks in which the departments of a company or a university are
likely to differ in the number of employees. Therefore, we believe
D2-R2 contributes towards role discovery establishing itself as a
more pervasive network analysis tool.
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